Assignment 5: $p n$ junctions

1. A Si $p n$ junction of $1 \mathrm{~cm}^{2}$ area consists of a n region with 10^{17} donors cm^{-3} and a p region with 2×10^{17} acceptors cm^{-3}. Calculate the
(a) Built-in potential
(b) Total depletion width
(c) Depletion widths on the p and n sides.

The junction is in equilibrium.
2. A $p n$ junction diode has a concentration of 10^{16} acceptor atoms cm^{-3} on the p-side and 10^{17} donor atoms cm^{-3} on the n side. What will be the built-in potential for the semiconducting materials Ge, Si, and GaAs?

Semiconductor	$E_{g}(\mathrm{eV})$	$n_{i}\left(\mathrm{~cm}^{-3}\right)$
Ge	0.7	2.40×10^{13}
Si	1.1	1.0×10^{10}
GaAs	1.4	2.10×10^{6}

3. A Si abrupt junction in equilibrium at $T=300 K$ is doped such that $E_{c} E_{F}=0.21 \mathrm{eV}$ in the n region and $E_{F} E_{v}=0.18 \mathrm{eV}$ in the p region. Take $n_{i}=10^{10} \mathrm{~cm}^{-3}, E_{g}=1.10 \mathrm{eV}$, and $E_{F i}=0.55 \mathrm{eV}$.
(a) Draw the energy band diagram of the junction.
(b) Determine the impurity doping concentrations in each region.
(c) Determine the built-in potential.
4. An abrupt $n p^{+}$junction diode has a cross sectional area of $1 \mathrm{~mm}^{2}$, an acceptor concentration of 5×10^{18} boron atoms cm^{-3} on the p-side and a donor concentration of 10^{16} arsenic atoms cm^{-3} on the n-side. The lifetime of holes in the n-region is $417 n s$, whereas that of electrons in
the p-region is only 5 ns . Mean thermal generation lifetime is $1 \mu \mathrm{~s}$. $\mu_{e}=120 \mathrm{~cm}^{2} V^{-1} \mathrm{~s}^{-1}, \mu_{h}=44 \mathrm{~cm}^{2} V^{-1} \mathrm{~s}^{-1}, E_{g}=1.1 \mathrm{eV}$. The length of the p and n regions are 5 and $100 \mu m$ respectively.
(a) Calculate the minority diffusion lengths and determine what type of diode this is.
(b) What is the built-in potential across the junction?
(c) What is the current when there is a forward bias of 0.6 V across the diode? Take $T=300 \mathrm{~K}$.
(d) Estimate the forward current at 373 K when the voltage across the diode remains at 0.6 V . Assume temperature dependence of n_{i} dominates D, L, and μ.
(e) What is the reverse current when the diode is reverse biased by a voltage $V_{r}=5 \mathrm{~V}$?
5. A Ge $p^{+} n$ diode at $T=300 K$ has the following parameters: $N_{A}=$ $10^{18} \mathrm{~cm}^{-3}, N_{D}=10^{16} \mathrm{~cm}^{-3}, D_{h}=49 \mathrm{~cm}^{2} \mathrm{~s}^{-1}, D_{e}=100 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$, $\tau_{h}=\tau_{e}=5 \mu \mathrm{~s}$, and $A=10^{-4} \mathrm{~cm}^{2}$. Determine the diode current for a forward bias voltage of 0.2 V . Take $n_{i}=2.4 \times 10^{13} \mathrm{~cm}^{-3}$.
