Assignment 5: pn junctions

- 1. A Si pn junction of $1 \ cm^2$ area consists of a n region with $10^{17} \ donors \ cm^{-3}$ and a p region with $2 \times 10^{17} \ acceptors \ cm^{-3}$. Calculate the
 - (a) Built-in potential
 - (b) Total depletion width
 - (c) Depletion widths on the p and n sides.

The junction is in equilibrium.

2. A pn junction diode has a concentration of 10^{16} acceptor atoms cm^{-3} on the p-side and 10^{17} donor atoms cm^{-3} on the n side. What will be the built-in potential for the semiconducting materials Ge, Si, and GaAs?

Semiconductor	E_g (eV)	$n_i \ (cm^{-3})$
Ge	0.7	2.40×10^{13}
Si	1.1	1.0×10^{10}
GaAs	1.4	2.10×10^6

- 3. A Si abrupt junction in equilibrium at T = 300 K is doped such that $E_c E_F = 0.21 \ eV$ in the *n* region and $E_F E_v = 0.18 \ eV$ in the *p* region. Take $n_i = 10^{10} \ cm^{-3}$, $E_g = 1.10 \ eV$, and $E_{Fi} = 0.55 \ eV$.
 - (a) Draw the energy band diagram of the junction.
 - (b) Determine the impurity doping concentrations in each region.
 - (c) Determine the built-in potential.
- 4. An abrupt np^+ junction diode has a cross sectional area of $1 mm^2$, an acceptor concentration of 5×10^{18} boron *atoms* cm^{-3} on the *p*-side and a donor concentration of 10^{16} arsenic *atoms* cm^{-3} on the *n*-side. The lifetime of holes in the *n*-region is 417 *ns*, whereas that of electrons in

the *p*-region is only 5 *ns*. Mean thermal generation lifetime is 1 μs . $\mu_e = 120 \ cm^2 V^{-1} s^{-1}, \ \mu_h = 44 \ cm^2 V^{-1} s^{-1}, \ E_g = 1.1 \ eV$. The length of the *p* and *n* regions are 5 and 100 μm respectively.

- (a) Calculate the minority diffusion lengths and determine what type of diode this is.
- (b) What is the built-in potential across the junction?
- (c) What is the current when there is a forward bias of 0.6 V across the diode? Take T = 300 K.
- (d) Estimate the forward current at 373 K when the voltage across the diode remains at 0.6 V. Assume temperature dependence of n_i dominates D,L, and μ .
- (e) What is the reverse current when the diode is reverse biased by a voltage $V_r = 5 V$?
- 5. A Ge p^+n diode at T = 300 K has the following parameters: $N_A = 10^{18} cm^{-3}$, $N_D = 10^{16} cm^{-3}$, $D_h = 49 cm^2 s^{-1}$, $D_e = 100 cm^2 s^{-1}$, $\tau_h = \tau_e = 5\mu s$, and $A = 10^{-4} cm^2$. Determine the diode current for a forward bias voltage of 0.2 V. Take $n_i = 2.4 \times 10^{13} cm^{-3}$.